题目内容
1.【解】∵EF∥AD(已知)
∴∠2=∠3(两直线平行,同位角相等)
又∵∠1=∠2(已知)
∴∠1=∠3(等量代换)
∴AB∥DG(内错角相等,两直线平行)
∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补)
又∵∠BAC=60°(已知)
∴∠AGD=120°.
分析 根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB∥DG,根据平行线的性质得出∠BAC+∠DGA=180°,代入求出即可.
解答 解:∵EF∥AD(已知),
∴∠2=∠3(两直线平行,同位角相等),
又∵∠1=∠2(已知),
∴∠1=∠3(等量代换),
∴AB∥DG(内错角相等,两直线平行),
∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),
又∵∠BAC=60°(已知),
∴∠AGD=120°,
故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠DGA,两直线平行,同旁内角互补,120°.
点评 本题考查了平行线的性质和判定,能灵活运用性质和判定定理进行推理是解此题的关键.
练习册系列答案
相关题目
11.计算正确的是( )
| A. | 3.4×104=340000 | B. | m×2m2=3m2 | C. | (-$\frac{1}{2}$mn2)2=m2n4 | D. | 4xy-4yx=0 |