题目内容
若∠α是锐角,且cosα=sin53°,则∠α的度数是_____.
如图,已知CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE,CD相交于点O,连接AO.求证:
(1)当∠1=∠2时,OB=OC;
(2)当OB=OC时,∠1=∠2.
(1)计算:(﹣4)﹣(3﹣2)
(2)化简:(.
如图,直线y=kx+b与坐标轴交于A,B两点,其中点B的坐标为(0,4),tan∠BAO=,一条抛物线的顶点为坐标原点,且与直线y=kx+b交于点C(m,8),点P为线段BC上一动点(不与点B,点C重合),PD⊥x轴于点D,交抛物线于点Q.
(1)求直线和抛物线的函数关系式;
(2)设点P的横坐标为t,线段PQ的长度为d,求出d与t之间的函数关系式,并求出d的最大值;
(3)是否存在点P的位置,使得以点P,D,B为顶点的三角形是等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由.
如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=_____.
用蓝色和红色可以混合在一起调配出紫色,小明制作了如图所示的两个转盘,其中一个转盘两部分的圆心角分别是120°和240°,另一个转盘两部分被平分成两等份,分别转动两个转盘,转盘停止后,指针指向的两个区域颜色恰能配成紫色的概率是( )
A. B. C. D.
使得函数值为零的自变量的值称为函数的零点.例如,对于函数y=x-1,令y=0可得x=1,我们就说1是函数y=x-1的零点.
已知y=x2-2mx-2(m+3)(m为常数).
(1)当m=0时,求该函数的零点;
(2)证明:无论m取何值,该函数总有两个零点;
(3)设函数的两个零点分别为x1和x2,且,此时函数图象与x轴的交点分别为A,B(点A在点B左侧),点M在直线y=x-10上,当MA+MB最小时,求直线AM的函数表达式.
下列说法中,错误的有_____________________
①公理的正确性是用定理证实的;
②证明一个命题是假命题,只要举一反例,即举出一个具备条件,而不具备结论的命题即可;
③要说明一个命题是真命题,只要举出例子,说它的正确性即可;
④假命题不是命题.
已知a=5,=2,则a+b的值为_________.