题目内容

5.如图,在△ABC中,AB=10,AC=8,BC=12,AD⊥BC于D,点E、F分别在AB、AC边上,把△ABC沿EF折叠,使点A与点D恰好重合,则△DEF的周长是(  )
A.14B.15C.16D.17

分析 根据折叠的性质可得EF为△ABC的中位线,△AEF≌△DEF,分别求出EF、DE、DF的长度,即可求得周长.

解答 解:由折叠的性质可得,△AEF≌△DEF,EF为△ABC的中位线,
∵AB=10,AC=8,BC=12,
∴AE=ED=5,AF=FC=4,EF=6,
∴△DEF的周长=5+4+6=15.
故选B.

点评 本题考查了翻折变换,解答本题的关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网