题目内容

如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判断直线CD和⊙O的位置关系,并说明理由.

(2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求∠BEC的正切值.

(1)直线CD与⊙O的位置关系是相切.理由见解析;(2 ). 【解析】【试题分析】 (1)证明切线的方法,知道直线与圆的交点,连接半径证垂直半径,即可. (2)BC已知,关键是求BE 的长度,在Rt 中,OA=5,OD=3,根据勾股定理得CD=4,在Rt 中,设BE=DE=x,列出勾股定理方程(4+x)2=x2+(5+3)2,解得:x=6,所以tan∠BEC=. 【试题解析...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网