题目内容

如果一个凸多边形的所有内角从小到大排列起来,恰好依次增加的度数相同,设最小角为100°,最大角为140°,那么这个多边形的边数为多少?

解:设该多边形的边数为n.
则为 =180•(n-2),解得n=6.
故这个多边形为六边形.
分析:根据内角和公式,设该多边形为n边形,内角和公式为180°•(n-2),因为最小角为100°,最大角140°,又依次增加的度数相同,则它的度数应该为
点评:本题思维灵活,也可利用方程解答,方程思想是解多边形有关问题常要用到的思想方法.本题难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网