题目内容

某校组织学生到外地进行社会实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.

(1)如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?

(2)如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案.

①租用甲型汽车8辆、乙型汽车12辆;②租用甲型汽车9辆、乙型汽车11辆; ③租用甲型汽车10辆、乙型汽车10辆.(2)最省钱的租车方案是:租用甲型汽车8辆、乙型汽车12辆. 【解析】试题分析:(1)首先根据题意列出不等式组得 解出的取值范围,最后确定的取值,进而确定出具体方案; (2)首先求出关于租车总费用的函数关系式,再根据一次函数的增减性确定总费用最小的租车方案. 试...
练习册系列答案
相关题目

⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.

(1)如图1,求证:AG=CP;

(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;

(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2,求AC的长.

【答案】(1)证明见解析;

(2)证明见解析;

(3)AC=10

【解析】

试题分析:(1)利用等弧所对的圆周角相等即可求解;

(2)利用等弧所对的圆周角相等,得到角相等∠APG=∠CAP,判断出△BOD≌△POH,再得到角相等,从而判断出线平行;

(3)由三角形相似,得出比例式,△HON∽△CAM,,再判断出四边形CDHM是平行四边形,最后经过计算即可求解.

试题解析:(1)∵过的中点P作⊙O的直径PG,

∴CP=PB,

∵AB,PG是相交的直径,

∴AG=PB,

∴AG=CP;

(2)证明:如图 2,连接BG

∵AB、PG都是⊙O的直径,

∴四边形AGBP是矩形,

∴AG∥PB,AG=PB,

∵P是弧BC的中点,

∴PC=BC=AG,

∴弧AG=弧CP,

∴∠APG=∠CAP,

∴AC∥PG,

∴PG⊥BC,

∵PH⊥AB,

∴∠BOD=90°=∠POH,

在△BOD和△POH中,

∴△BOD≌△POH,

∴OD=OH,

∴∠ODH=(180°﹣∠BOP)=∠OPB,

∴DH∥PB∥AG.

(3)如图3,作CM⊥AP于M,ON⊥DH于N,

∴∠HON=∠BOP=∠COP=∠CAP,

∴△HON∽△CAM,

作PQ⊥AC于Q,

∴四边形CDPQ是矩形,

△APH与△APQ关于AP对称,

∴HQ⊥AP,

由(1)有:HK⊥AP,

∴点K在HQ上,

∴CK=PK,

∴PK是△CMP的中位线,

∴CM=2FK=4,MF=PF,

∵CM⊥AP,HK⊥AP,

∴CM∥HK,

∴∠BCM+∠CDH=180°,

∵∠BCM=∠CAP=∠BAP=∠PHK=∠MHK,

∴∠MHK+∠CDH=180°,

∴四边形CDHM是平行四边形,

∴DH=CM=4,DN=HN=2,

∵S△ODH=DH×ON=×4×ON=2

∴ON=

∴OH==5,

∴AC==10.

考点:圆的综合题.

【题型】解答题
【结束】
16

如图,在平面直角坐标系中,已知抛物线C1:y=的顶点为M,与y轴相交于点N,先将抛物线C1沿x轴翻折,再向右平移p个单位长度后得到抛物线C2:直线l:y=kx+b经过M,N两点.

(1)结合图象,直接写出不等式x2+6x+2<kx+b的解集;

(2)若抛物线C2的顶点与点M关于原点对称,求p的值及抛物线C2的解析式;

(3)若直线l沿y轴向下平移q个单位长度后,与(2)中的抛物线C2存在公共点,

求3﹣4q的最大值.

(1)﹣2<x<0(2)y=﹣x2+6x﹣2(3)当q=时,3﹣4q取最大值,最大值为﹣7 【解析】试题分析:(1)、首先根据二次函数的解析式分别求出点M和点N的坐标,然后根据图像得出不等式的取值范围;(2)、根据翻折得出抛物线的顶点坐标和开口方向以及大小,从而得出抛物线的函数解析式;(3)、首先将点M和点N的坐标代入一次函数解析式得出一次函数的解析式,然后设平移后的解析式为y=3x+2-q...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网