ÌâÄ¿ÄÚÈÝ
9£®£¨1£©ÇóA¡¢B¡¢CÈýµã±íʾµÄÓÐÀíÊý·Ö±ðÊǶàÉÙ£¿
£¨2£©Ìî¿Õ£º
¢ÙÈç¹ûÊýÖáÉϵãDµ½A£¬CÁ½µãµÄ¾àÀëÏàµÈ£¬ÔòµãD±íʾµÄÊýΪ$\frac{1}{2}$£»
¢ÚÈç¹ûÊýÖáÉϵãEµ½µãAµÄ¾àÀëΪ2£¬ÔòµãE±íʾµÄÊýΪ1»ò-3£»
£¨3£©ÔÚÊýÖáÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µãFµ½µãAµÄ¾àÀëÊǵãFµ½µãBµÄ¾àÀëµÄ2±¶£¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãF±íʾµÄÊý£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÓÐÀíÊýµÄ¸ÅÄîÇó³öa£¬ÔÙ¸ù¾Ý·Ç¸ºÊýµÄÐÔÖÊÁÐʽÇó³öb¡¢cµÄÖµ£¬È»ºóд³öA¡¢B¡¢CÈýµã±íʾµÄÊý¼´¿É£»
£¨2£©¢ÙÉèµãD±íʾµÄÊýΪx£¬È»ºó±íʾ³öµãDµ½µãA¡¢CµÄ¾àÀë²¢Áгö·½³ÌÇó½â¼´¿É£»
¢ÚÉèµãE±íʾµÄÊýΪy£¬È»ºóÁгö¾ø¶ÔÖµ·½³ÌÇó½â¼´¿É£»
£¨3£©ÉèµãF±íʾµÄÊýΪz£¬È»ºóÁгö¾ø¶ÔÖµ·½³Ì£¬ÔÙÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©¡ßaÊÇ×î´óµÄ¸ºÕûÊý£¬
¡àa=-1£¬
ÓÉÌâÒâµÃ£¬b+4=0£¬c-2=0£¬
½âµÃb=-4£¬c=2£¬
ËùÒÔ£¬µãA¡¢B¡¢C±íʾµÄÊý·Ö±ðΪ-1¡¢-4¡¢2£»
£¨2£©¢ÙÉèµãD±íʾµÄÊýΪx£¬
ÓÉÌâÒâµÃ£¬x-£¨-1£©=2-x£¬
½âµÃx=$\frac{1}{2}$£¬
ËùÒÔ£¬µãD±íʾµÄÊýΪ$\frac{1}{2}$£»
¢ÚÉèµãE±íʾµÄÊýΪy£¬
ÓÉÌâÒâµÃ£¬|y-£¨-1£©|=2£¬
ËùÒÔ£¬y+1=2»òy+1=-2£¬
½âµÃy=1»òy=-3£¬
ËùÒÔ£¬µãE±íʾµÄÊýΪ1»ò-3£»
¹Ê´ð°¸Îª£º$\frac{1}{2}$£»1»ò-3£®
£¨3£©ÉèµãF±íʾµÄÊýΪz£¬
ÓÉÌâÒâµÃ£¬|z-£¨-1£©|=2|z-£¨-4£©|£¬
ËùÒÔ£¬z+1=2£¨z+4£©»òz+1=-2£¨z+4£©£¬
½âµÃz=-7»òz=-3£¬
ËùÒÔ£¬µãF±íʾµÄÊýΪ-7»ò-3£®
µãÆÀ ±¾Ì⿼²éÁ˷ǸºÊýµÄÐÔÖÊ£º¼¸¸ö·Ç¸ºÊýµÄºÍΪ0ʱ£¬Õ⼸¸ö·Ç¸ºÊý¶¼Îª0£¬ÊýÖáÉÏÁ½µã¼äµÄ¾àÀëµÄ±íʾ£¬×¼È·Áгö·½³ÌÊǽâÌâµÄ¹Ø¼ü£®