题目内容
(6分)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是。(结果保留
)
![]()
【解析】
连接AD,如图,
![]()
∵⊙A与BC相切于点D,
∴AD⊥BC,且AD=2,
又∵∠EAF=2∠EPF=80°,
而BC=4,
∴S阴=S△ABC﹣S扇EAF=
BC×AD﹣
=4﹣![]()
【解析】
试题分析:连接AD,根据切线的性质得AD⊥BC,即AD=2为BC边上的高;再根据圆周角定理得∠EAF=2∠EPF=80°,而S阴=S△ABC﹣S扇EAF,然后利用扇形的面积公式:S=
和三角形的面积公式即可计算出图中阴影部分的面积
考点:扇形面积的计算;切线的性质
练习册系列答案
相关题目