题目内容
7.某商店如果将进货单价8元的商品按每件10元售出,每天可销售200件,通过一段时间的摸索,该店主发现这种商品每涨价0.5元,其销售量就减少10件,每降价0.5元,其销售量就增加10件.(1)你能帮助店主设计一种方案,使每天的利润为700元吗?
(2)将售价定位每件多少元时,能使每天可获的利润最大?最大利润是多少?
分析 (1)如果设每件商品提高x元,可先用x表示出单件的利润以及每天的销售量,然后根据总利润=单价利润×销售量列出关于x的方程,进而求出未知数的值.
(2)首先设应将售价提为x元时,才能使得所赚的利润最大为y元,根据题意可得:y=(x-8)[200-20(x-10)],然后化简配方,即可得y=-20(x-14)2+720,即可求得答案.
解答 解:设每件商品提高x元,
则每件利润为(10+x-8)=(x+2)元,
每天销售量为(200-20x)件,
依题意,得:(x+2)(200-20x)=700.
整理得:x2-8x+15=0.
解得:x1=3,x2=5.
∴把售价定为每件13元或15元能使每天利润达到700元;
若设每件商品降价x元,
则(2-x)(200+20x)=700.
整理得:x2+8x+15=0,
解得:x1=-3,x2=-5,
∴把售价定为每件13元或15元能使每天利润达到700元.
(2)设利润为y:
则y=(x-8)[200-20(x-10)]
=-20x2+560x-3200
=-20(x-14)2+720,
则当售价定为14元时,获得最大利润;最大利润为720元.
答:把售价定为每件13元或15元能使每天利润达到700元,将售价定位每件14元时,能使每天可获的利润最大,最大利润是720元.
点评 此题考查的是二次函数在实际生活中的应用.此题难度不大,解题的关键是理解题意,找到等量关系,求得二次函数解析式.
练习册系列答案
相关题目
17.若二次函数y=mx2-3x+3m-m2的图象经过原点,则m的值为( )
| A. | 0或2 | B. | 3 | C. | 2 | D. | 0或$\frac{1}{2}$ |
18.
如图,点D在△ABC的边AB上,连接CD,下列条件中能判定ACD∽△ABC的共有( )
(1)∠ACD=∠B;
(2)∠ADC=∠ACB;
(3)AC2=AD•AB;
(4)AB•CD=AC•BC.
(1)∠ACD=∠B;
(2)∠ADC=∠ACB;
(3)AC2=AD•AB;
(4)AB•CD=AC•BC.
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
15.若m<n,则下列不等式中不正确的是( )
| A. | m+3<n+3 | B. | 9m<9n | C. | -m<-n | D. | $\frac{m}{2}$<$\frac{n}{2}$ |