题目内容

如图所示,AC=AD,BC=BD,CD交AB于E,F是AB上一点,则图中全等的三角形有(  )
分析:根据有三对边相等的两个三角形全等易证:△ACB≌ADB,由全等三角形的性质:对应边相等,对应角相等即可证明其他三角形全等.
解答:解:图中全等的三角形有6对,
理由如下:
在△ACB和ADB中,
AC=AD
AB=AB
BC=BD

∴△ACB≌ADB,
∴∠CAB=∠DAB,∠CBA=∠DBA,
利用SAS可证明△CAF≌△DAF,△CBE≌△DBE,△ACE≌△ADE,利用SSS可证明△CEF≌△DEF,△FCB≌△FDB,
∴图中全等的三角形有6对,
故选C.
点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网