题目内容
二次函数y=x2+4x+7的图象,当x 时,y随着x的增大而增大;当x 时,y随着x的增大而减小.
考点:二次函数的性质
专题:
分析:把二次函数解析式化为顶点式,可求得其对称轴且开口方向,根据对称轴两侧的增减性可得到答案.
解答:解:
∵y=x2+4x+7=(x+2)2+3,
∴其对称轴方程为x=-2,且开口向上,
∴当x<-2时,y随x的增大而减小,当x>-2时,y随x的增大而增大,
故答案为:>-2;<-2.
∵y=x2+4x+7=(x+2)2+3,
∴其对称轴方程为x=-2,且开口向上,
∴当x<-2时,y随x的增大而减小,当x>-2时,y随x的增大而增大,
故答案为:>-2;<-2.
点评:本题主要考查二次函数的增减性,掌握当抛物线开口向上时,在对称轴的左侧y随x的增大而减小,在对称轴的右侧y随x的增大而增大是解题的关键.
练习册系列答案
相关题目
李明做一道单项选择题,思考良久,仍没有答案,只好从所给四个答案中随意选了一个答案,那么李明答错的概率是( )
A、
| ||
B、
| ||
C、
| ||
| D、1 |