题目内容

如图,在矩形ABCD中,AD=2AB,点E,F分别是AD,BC的中点,连接AF与BE,CE与DF分别交于点M,N两点,则四边形EMFN是(  )

A. 正方形 B. 菱形 C. 矩形 D. 无法确定

A 【解析】∵四边形ABCD为矩形, ∴AD∥BC,AD=BC, 又∵E,F分别为AD,BC中点, ∴AE∥BF,AE=BF,ED∥CF,DE=CF, ∴四边形ABFE为平行四边形,四边形BFDE为平行四边形, ∴BE∥FD,即ME∥FN, 同理可证EN∥MF, ∴四边形EMFN为平行四边形, ∵四边形ABFE为平行四边形,∠ABC为直角, ...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网