题目内容
关于x的一元二次方程(a-1)x2+x+a2-1=0有一个根为0,则a的值是( )
A. ±1 B. -1 C. 1 D. 0
某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
如图,直线AB,CD相较于点O,OE⊥AB于点O,若∠BOD=40°,则下列结论不正确的是( )
A. ∠AOC=40° B. ∠COE=130°
C. ∠EOD=40° D. ∠BOE=90°
如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分ABCD是一个菱形。菱形周长的最小值是_________,菱形周长最大值是_________.
如图,分别以Rt△ABC的斜边AB,直角边AC为边向外作等边△ABD和△ACE,F为AB的中点,DE,AB相交于点G,若∠BAC=300,下列结论:①EF⊥AC;②四边形ADFE为菱形;③AD=4AG;④△DBF≌△EFA.其中正确结论的序号是( )
A. ②④ B. ①③ C. ①③④ D. ①②③④
已知,求下列各式的值:
(1) (2) (3)
,则n=____________
观察下面的一列单项式:x,﹣2x2,4x3,﹣8x4,…根据你发现的规律,第7个单项式为_____;第n个单项式为_____.
学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.
(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?
(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?