题目内容

△ACB中AD、CE分别是BC、AB边上的高,连接DE,BC=nBE.
(1)如图①当n=2时,=______.
(2)如图②当n=时,求证:AC=DE;
(3)如图③当=时,n=______
【答案】分析:三个小题的解法一致,都是通过两步相似来解答;首先根据已知条件,易证得△ABD∽△CBE,即可得:BD:BA=BE:BC,再加上公共角∠B,进而可证得△BDE∽△BAC,从而将DE:AC与BE:BC联系起来,由此得解.
解答:解:∵∠ADB=∠BEC=90°,∠B=∠B,
∴△BAD∽△BCE,
,∠B为公共角,
∴△BDE∽△BAC,
,即AC=nDE.
(1)当n=2时,=

(2)(证法同上);
∵∠ADB=∠BEC=90°,∠B=∠B,
∴△BAD∽△BCE,∴,∠B为公共角,
∴△BDE∽△BAC,∴,∴AC=DE.

(3)用上可知:,故
点评:此题主要考查的是相似三角形的判定和性质,难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网