题目内容
如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.
(1)求抛物线y=﹣x2+ax+b的解析式;
(2)当点P是线段BC的中点时,求点P的坐标;
(3)在(2)的条件下,求sin∠OCB的值.
![]()
【答案】(1) y=﹣x2+4x﹣3;(2) 点P的坐标为(
,
);(3)
.
【解析】分析:(1)将点A、B代入抛物线y=-x 2+ax+b,解得a,b可得解析式;
(2)由C点横坐标为0可得P点横坐标,将P点横坐标代入(1)中抛物线解析式,易得P点坐标;
(3)由P点的坐标可得C点坐标,A、B、C的坐标,利用勾股定理可得BC长,利用sin∠OCB=
可得结果.
详【解析】
(1)将点A、B代入抛物线y=﹣x2+ax+b可得,
,
解得,a=4,b=﹣3,
∴抛物线的解析式为:y=﹣x2+4x﹣3;
(2)∵点C在y轴上,
所以C点横坐标x=0,
∵点P是线段BC的中点,
∴点P横坐标xP=
=
,
∵点P在抛物线y=﹣x2+4x﹣3上,
∴yP=![]()
﹣3=
,
∴点P的坐标为(
,
);
(3)∵点P的坐标为(
,
),点P是线段BC的中点,
∴点C的纵坐标为2×
﹣0=
,
∴点C的坐标为(0,
),
∴BC=
=
,
∴sin∠OCB=
=
=
.
点睛:本题主要考查了待定系数法求二次函数解析式,二次函数图像与性质,解直角三角形,勾股定理,利用中点求得点P的坐标是解答此题的关键.
【题型】解答题
【结束】
24
如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=
,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
![]()