ÌâÄ¿ÄÚÈÝ
17£®£¨1£©µ±MÓëµãEÖØºÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏóÊÇ·ñ¾¹ýADµÄÖе㣿Ϊʲô£¿
£¨2£©ÊÇ·ñ´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣿Èô´æÔÚÇó³öµãMµÄ×ø±ê£¬Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©µ±MÓëµãEÖØºÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾¹ýADµÄÖе㣮ÀíÓÉ£ºÉèADµÄÖеãΪµãF£¬×÷BH¡ÍOA£¬ÓÉ¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãAµÄ×ø±êÊÇ£¨4$\sqrt{3}$£¬0£©£¬¿ÉÇó³öOA=OB=4$\sqrt{3}$£¬OH=HA=$\frac{1}{2}$OA=2$\sqrt{3}$£¬È»ºóÔÚRt¡÷BOHÖУ¬Óɹ´¹É¶¨Àí¿ÉÇóBHµÄÖµ£¬½ø¶øÈ·¶¨BµãµÄ×ø±ê£¬ÓÉ·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©Í¼Ïó¾¹ýµãB£¬´Ó¶øÈ·¶¨·´±ÈÀýº¯ÊýµÄ¹ØÏµÊ½£ºy=$\frac{12\sqrt{3}}{x}$£¬È»ºóÓÉACÊÇ¡ÏOABµÄƽ·ÖÏߣ¬¿ÉµÃ¡ÏOAE=¡ÏBAE=30¡ã£¬ÔÚRt¡÷AOEÖУ¬ÓÉ30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë£¬¿ÉµÃOE=$\frac{1}{2}$AE£¬Óɹ´¹É¶¨ÀíµÃ£ºOA2+OE2=AE2£¬¿ÉÇó£ºOE=4£¬½ø¶ø¿ÉµÃAE=8£¬ÓÉ¡÷AOMÈÆµãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖØºÏ£¬µÃµ½¡÷ABD£¬¸ù¾ÝÐýתµÄÐÔÖÊ£¬¿ÉµÃAD=AE=8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬½ø¶ø¿ÉµÃ¡ÏAOD=90¡ã£¬ÓɵãFÊÇADµÄÖе㣬¿ÉµÃµãFµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬4£©£¬È»ºó½«FµãµÄ×ø±ê´úÈë¹ØÏµÊ½£¬ÑéÖ¤µãF²»ÔÚ·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏóÉÏ£¬´Ó¶øµÃµ½£ºµ±MÓëµãEÖØºÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾¹ýADµÄÖе㣻
£¨2£©´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣮ÓÉ£¨1£©Öª£ºOE=4£¬½ø¶øÈ·¶¨E£¨0£¬4£©£¬È»ºóÉèÖ±ÏßACµÄ¹ØÏµÊ½Îª£ºy=kx+b£¬½«A£¨4$\sqrt{3}$£¬0£©£¬E£¨0£¬4£©´úÈëÉÏÊö¹ØÏµÊ½£¬´Ó¶ø¿ÉµÃÖ±ÏßACµÄ¹ØÏµÊ½Îª£ºy=-$\frac{\sqrt{3}}{3}$x+4£¬ÓɵãMÔÚÖ±ÏßACÉÏ£¬¿ÉÉèMµÄ×ø±êΪ£º£¨a£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬½ø¶ø¿ÉµÃMP=-$\frac{\sqrt{3}}{3}$a+4£¬È»ºóÓÉ30¡ã½ÇËù¶ÔµÄÖ±½Ç±ßµÈÓÚб±ßµÄÒ»°ë£¬¿ÉµÃAM=2MP=-$\frac{2\sqrt{3}}{3}a$+8£¬ÓÉ¡÷AOMÈÆµãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖØºÏ£¬µÃµ½¡÷ABD£¬¸ù¾ÝÐýתµÄÐÔÖÊ£¬¿ÉµÃAD=AM=-$\frac{2\sqrt{3}}{3}$a+8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬½ø¶ø¿ÉµÃ¡ÏAOD=90¡ã£¬´Ó¶øÈ·¶¨ADµÄÖеãµÄ×ø±ê£¬ÓÉ·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣬½«ADµÄÖе㣬´úÈëy=$\frac{12\sqrt{3}}{x}$£¬´Ó¶øÈ·¶¨MµÄ×ø±ê£®
½â´ð ½â£º£¨1£©µ±MÓëµãEÖØºÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾¹ýADµÄÖе㣮![]()
ÀíÓÉ£ºÉèADµÄÖеãΪµãF£¬×÷BH¡ÍOA£¬
¡ß¡÷AOBΪµÈ±ßÈý½ÇÐΣ¬µãAµÄ×ø±êÊÇ£¨4$\sqrt{3}$£¬0£©£¬
¡àOA=OB=4$\sqrt{3}$£¬OH=HA=$\frac{1}{2}$OA=2$\sqrt{3}$£¬¡ÏOAB=60¡ã£¬
ÔÚRt¡÷BOHÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºBH=$\sqrt{O{B}^{2}-O{H}^{2}}$=6£¬
¡àBµãµÄ×ø±êΪ£º£¨2$\sqrt{3}$£¬6£©£¬
¡à·´±ÈÀýº¯Êýy=$\frac{k}{x}$£¨x£¾0£©Í¼Ïó¾¹ýµãB£¬
¡àk=xy=12$\sqrt{3}$£¬
¡à·´±ÈÀýº¯ÊýµÄ¹ØÏµÊ½£ºy=$\frac{12\sqrt{3}}{x}$£¬
¡ßACÊÇ¡ÏOABµÄƽ·ÖÏߣ¬
¡à¡ÏOAE=¡ÏBAE=30¡ã£¬
ÔÚRt¡÷AOEÖУ¬
¡ß¡ÏOAE=30¡ã£¬
¡àOE=$\frac{1}{2}$AE£¬
Óɹ´¹É¶¨ÀíµÃ£ºOA2+OE2=AE2£¬
¼´£¨4$\sqrt{3}$£©2+OE2=£¨2OE£©2£¬
½âµÃ£ºOE=4£¬
¡àAE=8£¬
¡ß¡÷AOMÈÆµãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖØºÏ£¬µÃµ½¡÷ABD£®
¡àAD=AE=8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬
¡à¡ÏAOD=¡ÏOAB+¡ÏDAB=90¡ã£¬
¡ßµãFÊÇADµÄÖе㣬
¡àµãFµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬4£©£¬
µ±x=4$\sqrt{3}$ʱ£¬y=$\frac{12\sqrt{3}}{4\sqrt{3}}$=3¡Ù4£¬
¡àµãF²»ÔÚ·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏóÉÏ£¬
¼´µ±MÓëµãEÖØºÏʱ£¬·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏó²»¾¹ýADµÄÖе㣮
£¨2£©´æÔÚµãM£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣮![]()
ÓÉ£¨1£©Öª£ºOE=4£¬
¡àE£¨0£¬4£©£¬
ÉèÖ±ÏßACµÄ¹ØÏµÊ½Îª£ºy=kx+b£¬
½«A£¨4$\sqrt{3}$£¬0£©£¬E£¨0£¬4£©´úÈëÉÏÊö¹ØÏµÊ½µÃ£º
$\left\{\begin{array}{l}{b=4}\\{4\sqrt{3}k+b=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=4}\end{array}\right.$£¬
¡àÖ±ÏßACµÄ¹ØÏµÊ½Îª£ºy=-$\frac{\sqrt{3}}{3}$x+4£¬
¡ßµãMÔÚÖ±ÏßACÉÏ£¬
¡àÉèMµÄ×ø±êΪ£º£¨a£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬
¡àMP=-$\frac{\sqrt{3}}{3}$a+4£¬
¡ß¡ÏMAO=30¡ã£¬
¡àAM=2MP=-$\frac{2\sqrt{3}}{3}a$+8£¬
¡ß¡÷AOMÈÆµãA˳ʱÕëÐýת£¬Ê¹±ßAOÓë±ßABÖØºÏ£¬µÃµ½¡÷ABD£®
¡àAD=AM=-$\frac{2\sqrt{3}}{3}$a+8£¬¡ÏDAB=¡ÏMAO=30¡ã£¬
¡à¡ÏAOD=¡ÏOAB+¡ÏDAB=90¡ã£¬
¡àADµÄÖеãµÄ×ø±êΪ£º£¨4$\sqrt{3}$£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬
¡ß·´±ÈÀýº¯Êýy=$\frac{k}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣬
¡à½«ADµÄÖеãµÄ×ø±ê£¨4$\sqrt{3}$£¬-$\frac{\sqrt{3}}{3}$a+4£©£¬´úÈëy=$\frac{12\sqrt{3}}{x}$µÃ£º
-$\frac{\sqrt{3}}{3}$a+4=$\frac{12\sqrt{3}}{4\sqrt{3}}$£¬
½âµÃ£ºa=-$\sqrt{3}$£¬
¡àM£¨-$\sqrt{3}$£¬5£©£®
¼´´æÔÚµãM£¨-$\sqrt{3}$£¬5£©£¬Ê¹·´±ÈÀýº¯Êýy=$\frac{12\sqrt{3}}{x}$µÄͼÏ󱨾¹ýADµÄÖе㣮
µãÆÀ ´ËÌâÊÇ·´±ÈÀýº¯ÊýµÄ×ÛºÏÌ⣬Ö÷Òª¿¼²éÁË£ºÓôý¶¨ÏµÊý·¨Çó¹ØÏµÊ½¡¢¹´¹É¶¨Àí¡¢ÔÚÆ½ÃæÖ±½Ç×ø±êϵÄÚÈ·¶¨µãµÄ×ø±êµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇ£ºÃ÷ȷͼÐεÄÐýת²»¸Ä±äͼÐεĴóСÓëÐÎ×´£®
| A£® | 80¡ã | B£® | 50¡ã | C£® | 40¡ã | D£® | 30¡ã |
| A£® | 1 | B£® | -27 | C£® | 1»ò-27 | D£® | ÎÞ·¨È·¶¨ |
| A£® | 3±¶ | B£® | $\frac{1}{2}$ | ||
| C£® | $\frac{1}{3}$ | D£® | ²»ÖªABµÄ³¤¶È£¬ÎÞ·¨ÅÐ¶Ï |