题目内容
如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D。
![]()
(1)求点G的坐标;
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由。
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由。
| 解:(1)∵DC是AB垂直平分线,OA垂直AB, ∴G点为OB的中点 ∵ ∴ |
|
| (2)过点C作CH⊥x轴于点H 在Rt△ABO中,∠ABO=30°, ∴ 即 又∵CD垂直平分AB ∴BC=2, 在Rt△CBH中,CH= ∴ ∴ ∵∠DGO=60° ∴ ∴ ∴D(0,4) 设直线CD的解析式为:y=kx+b 则 解得 ∴ |
|
| (3)存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形 ①如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形 设QP交x轴于点E,在Rt△OEP中,OP=4,∠OPE=30° ∴OE=2, ∴ |
|
| ②如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形, 延长QP交x轴于点F,在Rt△POF中,OP=4,∠FPO=30° ∴ ∴ ∴ |
|
| ③如图,当PD=DQ=QO=OP= 在Rt△DQM中,∠MDQ=30°, ∴ ∴ |
|
| ④如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形, 设PQ交x轴于点N,此时∠OQP=∠ODQ=30° 在Rt△ONQ中, ∴ ∴ 综上所述,满足条件的点Q共有四点: |
练习册系列答案
相关题目