题目内容
计算:| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 2009×2011 |
分析:由于
=
×(
-
),可以利用此式把每一个分数展开,再进行计算.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
解答:解:原式=
×[(1-
)+(
-
)+…+(
-
)+(
-
)],
=
×[1-
+
-
+…+
-
+
-
],
=
×[1+
-
-
],
=
.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2009 |
| 1 |
| 2011 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2008 |
| 1 |
| 2010 |
| 1 |
| 2009 |
| 1 |
| 2011 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2010 |
| 1 |
| 2011 |
=
| 1514786 |
| 2021055 |
点评:本题考查了有理数的混合运算,注意利用公式于
=
×(
-
)来分解每一个分数,达到简化计算的目的.
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
练习册系列答案
相关题目