题目内容

如图,我国古代数学家得出的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形与大正方形的面积分别是为1、13,则直角三角形两直角边和a+b=
 
考点:勾股定理的证明
专题:
分析:根据大正方形的面积即可求得c2,利用勾股定理可以得到a2+b2=c2,然后求得直角三角形的面积即可求得ab的值,根据(a+b)2=a2+b2+2ab=c2+2ab即可求解.
解答:解:∵大正方形的面积是13,
∴c2=13,
∴a2+b2=c2=13,
∵直角三角形的面积是
13-1
4
=3,
又∵直角三角形的面积是
1
2
ab=3,
∴ab=6,
∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25.
∴a+b=5(舍去负值).
故答案是:5.
点评:本题考查了勾股定理以及完全平方公式.注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网