题目内容
【题目】如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的C1处,点D落在点D1处,C1D1交线段AE于点G.
(1)求证:△BC1F∽△AGC1;
(2)若C1是AB的中点,AB=6,BC=9,求AG的长.
![]()
【答案】(1)见解析;(2)
.
【解析】
(1)根据题意和图形可以找出△BC1F∽△AGC1的条件,从而可以解答本题;(2)根据勾股定理和(1)中的结论可以求得AG的长.
证明:(1)由题意可知∠A=∠B=∠GC1F=90°,
∴∠BFC1+∠BC1F=90°,∠AC1G+∠BC1F=90°,
∴∠BFC1=∠AC1G,
∴△BC1F∽△AGC1.
(2)∵C1是AB的中点,AB=6,
∴AC1=BC1=3.
∵∠B=90°,
∴BF2+32=(9﹣BF)2,
∴BF=4,
由(1)得△AGC1∽△BC1'F,
∴
=
,
∴
=
,
解得,AG=
.
练习册系列答案
相关题目