题目内容
已知四边形ABCD中,∠A=∠B=∠C=90°,若添加一个条件即可判定该四边形是正方形,那么这个条件可以是 .
如图,△ABC中,∠C=90°,AC=6,BC=8,将△ABC沿DE折叠,使点B落在AC边上的F处,并且DF∥BC,则BD的长是( )
A. B. C. D.
如图所示,在△ABC中,BC=6,E、F分别是AB、AC的中点,动点P在射线EF上,BP交CE于D,∠CBP的平分线交CE于Q,当CQ=CE时,EP+BP= .
下列方程是一元二次方程的是( )
A.ax2=bx
B.x2+3y-1=0
C.3x2-2x+=0
D.2(x+1)(x-1)=x+5
如图,铁道口的栏杆短臂长1米,长臂长16米,当短臂的端点下降0.5米时,求长臂端点应升高了多少米?
在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是 .
如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于( )
A.20 B.15 C.10 D.5
已知二次函数y=-x2+4x+m的部分图象如图所示,则关于x的一元二次方程-x2+4x+m=0的解为 .
如图,点A,B,C是数轴上三点,其中点C是线段AB的中点,点O是原点,线段AC比线段OA大1,点B表示的有理数是17,求点C表示的有理数.