题目内容
如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B—C—D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与X之间函数关系的图象是
八边形的外角和等于 .
先化简,再求值:(a+1)2-(a+1)(a-1),其中a=-3.
如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,DF⊥AC于F.
(1)求证:DF为⊙O的切线;
(2)若cosC=,CF=9,求AE的长.
在正方形ABCD内任取一点O,连接OA,OB得△ABO,如果正方形ABCD内每一点被取到的可能性都相同,则△ABO是钝角三角形的概率是 (结果保留π)
下面左图所示的几何体的左视图是
阅读材料:如图(一),△ABC的周长为,内切圆O的半径为r,连结OA、OB、OC,△ABC被划分为三个小三角形,用S△ABC表示△ABC的面积
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作为三角形内切圆半径公式)
(1)理解与应用:利用公式计算边长分为5、12、13的三角形内切圆半径;
(2)类比与推理:若四边形ABCD存在内切圆(与各边都相切的圆,如图(二))且面积为S,各边长分别为a、b、c、d,试推导四边形的内切圆半径公式;
(3)拓展与延伸:若一个n边形(n为不小于3的整数)存在内切圆,且面积为S,各边长分别为a1、a2、a3、…、an,合理猜想其内切圆半径公式(不需说明理由).
已知□ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是 ( )
A.AC⊥BD B.OA=0C C.AC=BD D.A0=OD
一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是 .