题目内容

在△ABC中,点D为BC的中点,BD=3,AD=4,AB=5,则AC=________.

5
分析:根据BD,AD,AB的长度可以判定△ABD为直角三角形,即AD⊥BC,又∵D为BC的中点,可以判定△ABC为等腰三角形,且AB=AC.
解答:解:在△ABD中,已知AB=5,AD=4,BD=3,
满足AB2=AD2+BD2
∴△ABD是直角三角形,
即AD⊥BC,
又∵D为BC的中点,
∴△ABC为等腰三角形,且AB=AC,
∴AC=5.
故答案为 5.
点评:本题考查了根据勾股定理的逆定理来判定直角三角形,考查了等腰三角形腰长相等的性质,本题中求证△ABC是等腰三角形是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网