题目内容
如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠A=30°,则sinE的值为( )
A. B. C. D.
小明解方程的过程如下.请指出他解答过程中的错误,并写出正确的解答过程.
【解析】方程两边同乘x,得1-(x-2)=1.……①
去括号,得1-x-2=1.……②
合并同类项,得-x-1=1.……③
移项,得-x=2.……④
解得x=-2.……⑤
∴原方程的解为x=-2.……⑥
如果,那么一定是___________
如图,在△ABC中,CD是边AB上的高线,BC=2,CD=,AC=2.求证:△ABC是直角三角形.
如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.
(1)求证:∠1=∠F;
(2)若sinB=,EF=2,求CD的长.
如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm,且tan∠EFC=,则矩形ABCD的周长是_____.
如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG于E,BF∥DE交AG于F,探究线段AF、BF、EF三者之间的数量关系,并说明理由.
如图,将矩形纸片ABCD的四个角向内折起,点A,点B落在点M处,点C,点D落在点N处,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3 cm,EF=4 cm,求AD的长.
已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.
(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;
(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?
②是否存在满足条件的点P,使得PC=?(不需说明理由).