题目内容


如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0).(10分)

(1)求抛物线的解析式;

(2)试探究△ABC的外接圆的圆心位置,并求出圆心坐标;

(3)若点M是线段BC下方的抛物线上一点,求△MBC的面积的最大值,并求出此时M点的坐标.


解:(1)将B(4,0)代入抛物线的解析式中,得:

0=16a﹣×4﹣2,即:a=;

∴抛物线的解析式为:y=x2﹣x﹣2.

(2)由(1)的函数解析式可求得:A(﹣1,0)、C(0,﹣2);

∴OA=1,OC=2,OB=4,

即:OC2=OA•OB,又:OC⊥AB,

∴△OAC∽△OCB,得:∠OCA=∠OBC;

∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,

∴△ABC为直角三角形,AB为△ABC外接圆的直径;

所以该外接圆的圆心为AB的中点,且坐标为:(,0).

(3)已求得:B(4,0)、C(0,﹣2),可得直线BC的解析式为:y=x﹣2;

设直线l∥BC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:

x+b=x2﹣x﹣2,即: x2﹣2x﹣2﹣b=0,且△=0;

∴4﹣4×(﹣2﹣b)=0,即b=4;

∴直线l:y=x﹣4.

由于S△MBC=BC×h,当h最大(即点M到直线BC的距离最远)时,△ABC的面积最大

所以点M即直线l和抛物线的唯一交点,有:

解得:

即 M(2,﹣3).


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网