题目内容
若抛物线的顶点坐标是A(1,16),并且抛物线与轴一个交点坐标为(5 ,0).
(1)求该抛物线的关系式;
(2)求出这条抛物线上纵坐标为10的点的坐标。
如图,把抛物线y=x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=x2交于点Q,则图中阴影部分的面积为 ▲ .
抛物线y=﹣x2+bx+c与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)在抛物线上求一点P,使S△PAB=S△ABC,写出P点的坐标;
(3)在抛物线的对称轴上是否存在点Q,使得△QBC的周长最小?若存在,求出点Q的坐标,若不存在,请说明理由.
如果矩形的面积为8,那么它的长y与宽x的函数关系的大致图象表示为( )
A. B. C. D.
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
若二次函数y=2x2的图象向左平移2个单位长度后,得到函数y=2(x+h)2的图象,则h= .
二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是( )
A. t≥﹣1 B. ﹣1≤t<3 C. ﹣1≤t<8 D. 3<t<8
若成立,则的取值范围为________.
如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与四边形ABCO的边所在直线相切时,P点的坐标为_____.