题目内容
如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A(﹣2,4),B(﹣2,1),C(﹣5,2).
(1)请画出△ABC关于x轴对称的△A1B1C1.
(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.
(3)求△A1B1C1与△A2B2C2的面积比,即
:
= (不写解答过程,直接写出结果).![]()
解:(1)如图所示:△A1B1C1即为所求;
(2)如图所示:△A2B2C2即为所求;
(3)∵将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,
∴△A1B1C1与△A2B2C2的相似比为:1:2,
∴
:
=1:4.故答案为:1:4.![]()
练习册系列答案
相关题目
七(一)班同学为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):
| 月均用水量x/m3 | 0<x≤5 | 5<x≤10 | 10<x≤15 | 15<x≤20 | x>20 |
| 频数/户 | 12 | 20 | 3 | ||
| 频率 | 0.12 | 0.07 |
若该小区有800户家庭,据此估计该小区月均用水量不超过10m3的家庭约有 户.