题目内容
每个小方格都是边长为1个单位长度,正方形ABCD在坐标系中的位置如图所示.
(1)画出正方形ABCD关于原点中心对称的图形;
(2)画出正方形ABCD绕点D点顺时针方向旋转90°后的图形;
(3)求出正方形ABCD的点B绕点D点顺时针方向旋转90°后经过的路线.
![]()
![]()
【考点】作图-旋转变换.
【专题】作图题.
【分析】(1)根据关于原点中心对称的点的坐标特征写出A、B、C、D的对应点A′、B′、C′、D′的坐标,然后描点即可得到正方形A′B′C′D′;
(2)根据网格特点、正方形的性质和旋转的性质画出点C和B的对应点E和F,则可得到正方形ABCD绕点D点顺时针方向旋转90°后的正方形CFED;
(3)由于点B绕点D点顺时针方向旋转90°后经过的路径为以D点为圆心,半径为BD,圆心角为90度的弧,于是根据弧长公式可求解.
【解答】解:(1)如图,正方形A′B′C′D′为所作;
(2)如图,正方形CFED为所作;
![]()
![]()
(3)BD=![]()
=![]()
,
所以正方形ABCD的点B绕点D点顺时针方向旋转90°后经过的路线长=![]()
=![]()
π.
【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.
练习册系列答案
相关题目