题目内容

17.如图,在四边形ABCD中,∠A=∠C=90°,∠ABC,∠ADC的平分线分别与AD,BC相交于E,F两点,FG⊥BE于点G,∠1与∠2之间有怎样的数量关系?为什么?

分析 先根据四边形的内角和求出∠ADC+∠ABC=180°,再结合角平分线得出∠EBC+∠2=90°,再利用直角三角形的两锐角互余得出,∠1+∠EBC=90°,即可得出结论.

解答 解:∠1=∠2,
理由:∵∠A=∠C=90°,根据四边形的内角和得,∠ADC+∠ABC=180°,
∵BE平分∠ABC,DF平分∠ADC,
∴∠EBC=$\frac{1}{2}$∠ABC,∠2=$\frac{1}{2}$∠ADC,
∴∠EBC+∠2=$\frac{1}{2}$∠ABC+$\frac{1}{2}$∠ADC=90°,
∵FG⊥BE,
∴∠FGB=90°,
∴∠1+∠EBC=90°,
∴∠1=∠2.

点评 此题主要考查了四边形的内角和,角平分线的定义,直角三角形的性质,解本题的关键是整体求出∠EBC+∠2=90°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网