题目内容

(10分)如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;

(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.

(1)证明:∵△ABC是等边三角形

∴∠ABQ=∠CAP,AB=CA,

又∵点P、Q运动速度相同,

∴AP=BQ,

在△A BQ与△CAP中,

AB=CA

∠ABQ=∠CAP

AP=BQ

∴△ABQ≌△CAP(SAS);

(2)【解析】
点P、Q在运动的过程中,∠QMC不变.

理由:∵△ABQ≌△CAP,

∴∠BAQ=∠ACP,

∵∠QMC=∠ACP+∠MAC,

∴∠QMC=∠BAQ+∠MAC=∠BAC=60°

(3)【解析】
点P、Q在运动到终点后继 续在射线AB、BC上运动时,∠QMC不变.

理由:∵△ABQ≌△CAP,

∴∠BAQ=∠ACP,

∵∠QMC=∠BAQ+∠APM,

∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°.

【解析】

试题分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP,根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.

考点:等边三角形的性质;全等三角形的判定与性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网