题目内容
若解分式方程﹣=0时产生增根,则a=_____.
在平面直角坐标系中,已知点A(﹣,0),B(,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标_____.
若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是_____.
如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)若AG=7、GF=3,求DF的长.
如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数的图象上,OA=1,OC=6,则正方形ADEF的边长为 .
快车和慢车同时从A地出发,分别以速度v1、v2(v1>2v2)匀速向B地行驶,快车到达B地后停留了一段时间,沿原路仍以速度v1匀速返回,在返回途中与慢车相遇.在上述过程中,两车之间的距离y与慢车行驶时间x之间的函数图象大致是( )
AB.C.D.
如图①,在△ABC与△ADE中,AB=AC,AD=AE,∠A是公共角。
(1)BD与CE的数量关系是:BD______CE;
(2)把图①△ABC绕点A旋转一定的角度,得到如图②所示的图形。
①求证:BD=CE;
②BD与CE所在直线的夹角与∠DAE的数量关系是什么?说明理由。
(3)若AD=10,AB=6,把图①中的△ABC绕点A顺时针旋转α度(0°<α≤360)直接写出BD长度的取值范围。
如图,AB∥CD,点E在AB上,点F在CD上,EF⊥FH,FH与AB相交于点G,若∠CFE=40°,则∠EGF的( )
A. 40° B. 50° C. 60° D. 70°
若3m=6,3n=2,则32m﹣n=________ .