题目内容

20.若a、b、c为△ABC的三边长,且满足|a-4|+$\sqrt{b-2}$=0,则c的值可以为(  )
A.5B.6C.7D.8

分析 先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,从而确定c的可能值;

解答 解:∵|a-4|+$\sqrt{b-2}$=0,
∴a-4=0,a=4;b-2=0,b=2;
则4-2<c<4+2,
2<c<6,5符合条件;
故选A.

点评 本题考查了等腰三角形的性质、三角形三边关系及非负数的性质:有限个非负数的和为零,那么每一个加数也必为零;注意初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网