题目内容
如图,点A、B、C、D在同一条直线上,BE∥DF,∠A=∠F,AB=FD.求证:AE=FC.
如图,平行四边形ABCD的顶点A、B、D在⊙O上,顶点C在⊙O直径BE上,连结AE,若∠E=36°,则∠ADC的度数是( )
A.44° B.54° C.72° D.53°
(本题满分10分,每小题5分)
(1)解分式方程:; (2)解不等式组:.
如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A和点B,如果△AMB为等腰直角三角形,我们把抛物线上A、B两点之间部分与线段AB围成的图形称为该抛物线的准蝶形,顶点M称为碟顶,线段AB的长称为碟宽.
(1)抛物线的碟宽为 ,抛物线y=ax2(a>0)的碟宽为 .
(2)如果抛物线y=a(x-1)2-6a(a>0)的碟宽为6,那么a= .
(3)将抛物线yn=anx2+bnx+cn(an>0)的准蝶形记为Fn(n=1,2,3, ),我们定义F1,F2, ,Fn为相似准蝶形,相应的碟宽之比即为相似比.如果Fn与Fn-1的相似比为,且Fn的碟顶是Fn-1的碟宽的中点,现在将(2)中求得的抛物线记为y1,其对应的准蝶形记为F1.
①求抛物线y2的表达式;
②请判断F1,F2,,Fn的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的表达式;如果不是,说明理由.
列方程或方程组解应用题:
北京快速公交4号线开通后,为响应“绿色出行”的号召,家住门头沟的李明上班由自驾车改为乘公交.已知李明家距上班地点18千米,他乘公交平均每小时行驶的路程比他自驾车平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交所用时间是自驾车所用时间的,问李明自驾车上班平均每小时行驶多少千米?
当分式的值为0时,x的值为 .
已知反比例函数的表达式为,它的图象在各自象限内具有y随x增大而减小的特点,那么k的取值范围是
A.k>1 B.k<1 C.k>0 D.k<0
计算:.
下列关系式中,正确的是( )
A. B.
C. D.