题目内容

4.求满足等式x$\sqrt{y}$+y$\sqrt{x}$-$\sqrt{2003x}$-$\sqrt{2003y}$+$\sqrt{2003xy}$=2003的正整数对(x,y)的个数.

分析 先将已知等式变形,($\sqrt{xy}$-$\sqrt{2003}$)($\sqrt{x}$+$\sqrt{y}$+$\sqrt{2003}$)=0,由$\sqrt{x}$+$\sqrt{y}$+$\sqrt{2003}$>0,则$\sqrt{xy}$-$\sqrt{2003}$=0,从而求得x,y的正整数对的个数.

解答 解:由x$\sqrt{y}$+y$\sqrt{x}$-$\sqrt{2003x}$-$\sqrt{2003y}$+$\sqrt{2003xy}$=2003可得:
($\sqrt{xy}$-$\sqrt{2003}$)($\sqrt{x}$+$\sqrt{y}$+$\sqrt{2003}$)=0,
∵$\sqrt{x}$+$\sqrt{y}$+$\sqrt{2003}$>0,
∴$\sqrt{xy}$-$\sqrt{2003}$=0,
故xy=2003,
又∵2003是质数,
∴必有$\left\{\begin{array}{l}{x=1}\\{y=2003}\end{array}\right.$,$\left\{\begin{array}{l}{x=2003}\\{y=1}\end{array}\right.$.
故正整数对(x,y)的个数是2.

点评 本题考查了质数和合数,以及二次根式的混合运算,是一道综合题难度较大.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网