题目内容
| 2 |
| A、4 | ||
| B、5 | ||
| C、6 | ||
D、
|
考点:正方形的性质,坐标与图形性质,全等三角形的判定与性质
专题:
分析:过P点作x轴和y轴的垂线,可通过三角形全等,证明点P在∠AOB的角平分线上,再根据P到x轴的最大距离为3
即可得出a的值.
| 2 |
解答:
解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,
∵∠FPB+∠FPA=90°,∠EPA+∠FPA=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴点P都在∠AOB的平分线上.
∵OA=OD时点P到y轴的距离最大,此时PE与AP重合,PB与PF重合,
∴a=
=
=
=6.
故选C.
∵∠FPB+∠FPA=90°,∠EPA+∠FPA=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴点P都在∠AOB的平分线上.
∵OA=OD时点P到y轴的距离最大,此时PE与AP重合,PB与PF重合,
∴a=
| PA2+PB2 |
(3
|
| 36 |
故选C.
点评:本题考查了正方形的性质,坐标与图形的性质,全等三角形的判定与性质,角平分线的判定,根据题意作出辅助线构造出全等三角形是解题的关键.
练习册系列答案
相关题目
要使正十二边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转( )
| A、30° | B、45° |
| C、60° | D、75° |
若a<0,则-2a
等于( )
-
|
A、-2
| ||||
B、2
| ||||
C、-
| ||||
D、-2a2
|