题目内容


如图,△ABC的边AB为⊙O的直径,BC与圆交于点D,D为BC的中点,过D作DE⊥AC于E.

(1)求证:AB=AC;

(2)求证:DE为⊙O的切线;

(3)若AB=13,sinB=,求CE的长.


(1)证明:连接AD,

∵AB是⊙O的直径,

∴∠ADB=90°

∴AD⊥BC,又D是BC的中点,

∴AB=AC;

 

(2)证明:连接OD,

∵O、D分别是AB、BC的中点,

∴OD∥AC,

∴∠ODE=∠DEC=90°,

∴OD⊥DE,

∴DE是⊙O的切线;

 

(3)解:∵AB=13,sinB=

=

∴AD=12,

∴由勾股定理得BD=5,

∴CD=5,

∵∠B=∠C,

=

∴DE=

∴根据勾股定理得CE=


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网