题目内容
已知:关于的方程。
(1)不解方程:判断方程根的情况;
(2)若方程有一个根为3,求的值.
(1)方程有两个不相等的实数根;(2)m1= -2,m2= -4
的系数是 .
已知:y + 2与3x成正比例,且当x = 1时,y的值为4 .
(1)求y与x之间的函数关系式;(2)若点(m−1,a)、点(m+2,b)(m为常数)是该函数图像上的两点,试比较a、b的大小,并说明理由.
若二次根式有意义,则的取值范围是 .
(a+1)-2(a-2).
如图,在边长为2的正方形ABCD中,G是AD延长线上的一点,且DG=AD,动点M从A出发,以每秒1个单位的速度沿着A→C→G的路线向G点匀速运动(M不与A、G重合),设运动时间为t秒。连接BM并延长交AG于N。
(1)是否存在点M,使△ABM为等腰三角形?若存在,分析点M的位置;若不存在,请说明理由;
(2)当点N在AD边上时,若BN⊥HN,NH交∠CDG的平分线于H,求证:BN=NH;
(3)过点M分别作AB、AD的垂线,垂足分别为E、F,矩形AEMF与△ACG重叠部分的面积为S,求S的最大值。
到△ABC的三条边距离相等的点是△ABC的( )
A.三条中线交点 B.三条角平分线交点
C.三条高的交点 D.三条边的垂直平分线交点
在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=30°,求∠ACF的度数.
二次函数y=x2﹣6x+c的图象的顶点与原点的距离为5,则c=__________.