题目内容
【题目】为了传承中华优秀传统文化,某校学生会组织了一次全校1200名学生参加的“汉字听写”大赛,并设成绩优胜奖.
赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:
成绩x/分 | 频数 | 频率 |
50≤x<60 | 10 | 0.10 |
60≤x<70 | 25 | 0.25 |
70≤x<80 | 30 | b |
80≤x<90 | a | 0.20 |
90≤x≤100 | 15 | 0.15 |
成绩在70≤x<80这一组的是:
70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79
请根据所给信息,解答下列问题:
(1)a= ,b= ;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数是 ;
(4)若这次比赛成绩在78分以上(含78分)的学生获得优胜奖,则该校参加这次比赛的1200名学生中获优胜奖的约有多少人?
![]()
【答案】(1)20,0.3;(2)详见解析;(3)75;(4)480(人).
【解析】
(1)根据频数、频率以及总数之间的关系即可求出a和b;
(2)根据(1)求出a的值直接补全统计图即可;
(3)根据中位数的定义直接解答即可;
(4)用总人数乘以在这次比赛中获优胜奖的人数所占的百分比即可得出答案.
解:(1)a=100×0.2=20(分),
30÷100=0.3;
故答案为:20,0.3;
(2)根据(1)求出a的值,补图如下:
![]()
(3)把这些数从小到大排列,中位数是第50、51个数的平均数,则中位数落在70≤x<80这组,中位数是75;
故答案为:75;
(4)样本中成绩在78分以上的人数为40人,占样本人数的40%,
获优胜奖的人数约为1200×40%=480(人).