题目内容

如图,△ABC是一张锐角三角形的硬纸片.AD是边BC上的高,BC=40cm,AD=30cm.从这张硬纸片剪下精英家教网一个长HG是宽HE的2倍的矩形EFGH.使它的一边EF在BC上,顶点G,H分别在AC,AB上.AD与HG的交点为M.
(1)求证:
AM
AD
=
HG
BC

(2)求这个矩形EFGH的周长.
分析:(1)根据矩形性质得出∠AHG=∠ABC,再证明△AHG∽△ABC,即可证出;
(2)根据(1)中比例式即可求出HE的长度,以及矩形的周长.
解答:(1)证明:∵四边形EFGH为矩形,
∴EF∥GH,
∴∠AHG=∠ABC,
又∵∠HAG=∠BAC,
∴△AHG∽△ABC,
AM
AD
=
HG
BC


(2)解:由(1)
AM
AD
=
HG
BC
得:设HE=xcm,MD=HE=xcm,
∵AD=30cm,
∴AM=30-x,
∵HG=2HE,
∴HG=2x,
可得
30-x
30
=
2x
40

解得,x=12,
2x=24
所以矩形EFGH的周长为:2×(12+24)=72(cm).
答:矩形EFGH的周长为72cm.
点评:此题主要考查了相似三角形的判定与性质,根据矩形性质得出△AHG∽△ABC是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网