题目内容


如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM、射线AE于点F、D.

(1)直接写出∠NDE的度数;

(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;

(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD= ,其他条件不变,求线段AM的长.

 


解:(1)∵∠ACB=90°,∠MCN=90°,

∴∠ACM=∠BCN,

在△MAC和△NBC中,

∴△MAC≌△NBC,

∴∠NBC=∠MAC=90°,

又∵∠ACB=90°,∠EAC=90°,

∴∠NDE=90°;

(2)不变,

在△MAC≌△NBC中,

∴△MAC≌△NBC,

∴∠N=∠AMC,

又∵∠MFD=∠NFC,

∠MDF=∠FCN=90°,即∠NDE=90°;

(3)作GK⊥BC于K,

∵∠EAC=15°,

∴∠BAD=30°,

∵∠ACM=60°,

∴∠GCB=30°,

∴∠AGC=∠ABC+∠GCB=75°,

∠AMG=75°,

∴AM=AG,

∵△MAC≌△NBC,

∴∠MAC=∠NBC,

∴∠BDA=∠BCA=90°,

∵BD=

∴AB=+

AC=BC=+1,

设BK=a,则GK=a,CK=a,

∴a+a=+1,

∴a=1,

∴KB=KG=1,BG=

AG=

∴AM=

本题考查的是矩形的判定和性质以及三角形全等的判定和性质,正确作出辅助线、利用方程的思想是解题的关键,注意旋转的性质的灵活运用.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网