题目内容
(3分)计算的结果是( )
A. B. C. D.
(9分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).
这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:
(1)分解因式x2﹣2xy+y2﹣16;
(2)△ABC三边a,b,c 满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.
(3分)任意大于1的正整数m的三次幂均可“分裂”成m个连续奇数的和,如:,,,…按此规律,若分裂后其中有一个奇数是2015,则m的值是( )
A.46 B.45 C.44 D.43
(5分)先化简,再求值:,其中a5.
(3分)在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为( )
A.(4,1) B.(4,﹣1) C.(5,1) D.(5,﹣1)
(12分)已知关于x的方程.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)当抛物线图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,),Q(1,)是此抛物线上的两点,且,请结合函数图象确定实数a的取值范围;
(3)已知抛物线恒过定点,求出定点坐标.
(3分)如图,将一张边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为 cm2.
(12分)矩形AOCD绕顶点A(0,5)逆时针方向旋转,当旋转到如图所示的位置时,边BE交边CD于M,且ME=2,CM=4.
(1)求AD的长;
(2)求阴影部分的面积和直线AM的解析式;
(3)求经过A、B、D三点的抛物线的解析式;
(4)在抛物线上是否存在点P,使?若存在,求出P点坐标;若不存在,请说明理由.
2014年的一份调查报告显示,苏州城市人口(常驻人口加流动人口)跨入千万行列,达到10460000人,数字10460000用科学记数法表示为 .