题目内容
若代数式有意义,则x的取值范围是 ______ .
有6个数,它们的平均数是12,再添加一个数5,则这7个数的平均数是_____.
如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.
我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )
A. (,1) B. (2,1) C. (1, ) D. (2, )
先化简、再求值。(6x+)-(4x+),其中x=,y=27.
如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D. 则CD的长为( )
A. B. C. D.
三角形角平分线交点或三角形内切圆的圆心都称为三角形的内心.按此说法,四边形的四个角平分线交于一点,我们也称为“四边形的内心”.
(1)试举出一个有内心的四边形.
(2)探究:对于任意四边形ABCD,如果有内心,则四边形的边长具备何种条件?为什么?
(3)探究:腰长为的等腰直角三角形ABC,∠C=90°,O是△ABC的内心,若沿图中虚线剪开,O仍然是四边形ABDE的内心,此时裁剪线有多少条?
(4)问题(3)中,O是四边形ABDE内心,且四边形ABDE是等腰梯形,求DE的长?
某班学生在颁奖大会上得知该班获得奖励的情况如下表:
已知该班共有28人获得奖励,其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )
A.3项 B.4项 C.5项 D.6项
直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )
A. x≤3 B. x≥3
C. x≥-3 D. x≤0