题目内容
已知,在Rt△ABC中,∠C=90°,tanB=,则cosA=_____.
如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD等于( )
A. 18° B. 36° C. 54° D. 64°
如图,抛物线与轴交于点,顶点为,抛物线的对称轴交轴于点,交于点,,直线与抛物线的另一个交点为.当时,的值是________.
商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答:
(1)当每件商品售价定为140元时,每天可销售多少件商品?商场获得的日盈利是多少?
(2)在上述条件不变,商品销售正常的情况下,每件商品的销售价定为多少元,商场日盈利可达1500元?
方程应用配方法时,配方所得方程为________.
延长等腰梯形的两腰相交,所构成的三角形的中位线恰好是该梯形的上底,则该三角形的中位线与原梯形的中位线的比是( )
A. B. C. D.
在平面直角坐标系中,点关于原点对称的点的坐标是( )
若-2a2bm+2与﹣an -1b4的和是单项式,则m﹣n的值为( )
A. 0 B. -1 C. 1 D. -2
先化简,再求值: ,其中a=2,b=.