题目内容
解方程:
(1)(配方法);.
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
说明:方案一:图形中的圆过点A、B、C;
方案二:直角三角形的两直角边与展开图左下角的正方形边重合,斜边经过两个正方形的顶点.
纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.
你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.
请帮忙计算方案二的利用率,并写出求解过程.
探究:
(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率.
如图,在边长为的小正方形组成的网络中,的顶点均在格点上,请按要求完成下列各题:
以直线为对称轴作的轴对称图形,得到,再将绕着点顺时针旋转,得到,请依次画出、;
请画出一个格点,使,且相似比不为.
如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE∥BD, DE∥AC , AD=2, DE=2,则四边形 OCED 的面积为( )
A. 2 B. 4 C. 4 D. 8
在中,,,垂足为、、分别是、边上一点,且,.
求证:.
求的度数.
在比例尺为的地图上,量得甲、乙两地的距离是,则甲、乙两地的实际距离为________千米.
如图,正方形中,点,分别在,上,且为等边三角形,下列结论:
①;②;③;④.
其中正确的结论个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
圆锥形的烟囱冒的底面直径是,母线长是,制作个这样的烟囱冒至少需要________㎡的铁皮(结果保留).
关于 x 的一元二次方程 kx 2 +2 x +1=0有两个不相等的实数根,则 k 的取值范围是( ).
A. k>-1 B. k≥-1 C. k≠0 D. k<1且k≠0