题目内容
设m=
+
+…+
,则m(m-
)的值=
| 1 | ||
1+
|
| 1 | ||||
|
| 1 | ||||
|
| 2012 |
1-2
| 503 |
1-2
.| 503 |
分析:先计算m的值,先把各分母有理化得到m=
+
+…+
,化简得到m=
-1,然后把m的值代入m(m-
)进行计算,再把结果化简即可.
| ||||
(
|
| ||||||||
(
|
| ||||||||
(
|
| 2012 |
| 2012 |
解答:解:∵m=
+
+…+
=
+
+…+
=
-1+
-
+…+
-
=
-1,
∴m(m-
)=(
-1)(
-1-
)=1-
=1-2
.
故答案为1-2
.
| 1 | ||
|
| 1 | ||||
|
| 1 | ||||
|
=
| ||||
(
|
| ||||||||
(
|
| ||||||||
(
|
=
| 2 |
| 3 |
| 2 |
| 2012 |
| 2011 |
=
| 2012 |
∴m(m-
| 2012 |
| 2012 |
| 2012 |
| 2012 |
| 2012 |
| 503 |
故答案为1-2
| 503 |
点评:本题考查了分母有理化:把分母中的根号化去,叫做分母有理化;
-
的有理化因式为
+
分母有理化.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目