题目内容
(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
如图,将半径为3的圆形纸片,按下列顺序折叠.若和都经过圆心,则阴影部分的面积是 (结果保留π).
的绝对值是( )
A. B. C. D.
在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个小球不放回,再随机地摸出一个小球,则两次摸出的小球的标号的和为奇数的概率是( )
(12分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
如图,四边形ABCD与四边形AEFG都是菱形,点C在AF上,点E,G分别在BC,CD上,若∠BAD=1350,∠EAG=750,则= .
给出下列命题及函数y=x,y=x2和y=的图象,如图下列命题错误的是( )
A.如果0<a<1,那么>a>a2
B.如果a>1,那么a2>a>
C.如果-1<a<0,那么>a2>a
D.如果a<-1,那么a2>>a
已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)若为小于2的整数,且方程的根都是整数,求的值.
一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( )