题目内容
一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( )
A. B. C. D.
(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( )
A.30° B.60° C.90° D.120°
计算:
分解因式: .
3的相反数是( )
A. B. C.3 D.
如图,矩形ABCD中,点O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC.
求证:(1)四边形EBFD是菱形; (2)MB : OE=3:2 .
已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为,则a等于( )
A.1 B.2 C.3 D.4
(8分)某中学为了预测本校应届毕业生“一分钟跳绳”项目的考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据统计图中提供的信息解答下列问题:
(1)本次抽取的女生总人数为 ,其中第四小组的人数为 ,第六小组人数占总人数的百分比为 ;
(2)请补全频数分布直方图:
(3)若“一分钟跳绳”不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数:
(4)若“一分钟跳绳”成绩不低于170次的为满分,不低于130次的为优秀,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?