题目内容
已知关于的一元二次方程有两个不相等的实数根.
(1)求的取值范围;
(2)若为小于2的整数,且方程的根都是整数,求的值.
不等式组的解集为 .
(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.当△ABC满足什么条件时,四边形ADCF是菱形?为什么?
如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥EF,交直线AB于点G,若∠1=42°,则∠2的大小是( )
A.56° B.48° C.46° D.40°
阅读、操作与探究:
小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下:
如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为 .
请仿照小亮的方法解决下列问题:
(1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值;
(2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为 .
规定:在平面直角坐标系xOy中,“把某一图形先沿x轴翻折,再沿y轴翻折”为一次变化.如图,已知正方形ABCD,顶点A(1,3),C(3,1).若正方形ABCD经过一次上述变化,则点A变化后的坐标为 ,如此这样,对正方形ABCD连续做2015次这样的变化,则点D变化后的坐标为 .
若正多边形的一个外角为60º,则这个正多边形的中心角的度数是( )
A.30° B.60° C.90° D.120°
计算:
已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从此布袋里任意摸出1个球,该球是红球的概率为,则a等于( )
A.1 B.2 C.3 D.4