题目内容
【题目】如图①,
中,
,点
从点
出发沿
方向匀速运动,速度为1
点
是
上位于点
右侧的动点,点
是
上的动点,在运动过程中始终保持
,
cm.过
作
交
于
,当点
与点
重合时点
停止运动.设
的而积为
,点
的运动时问为
,
与
的函数关系如图②所示:
(1)
=_______
,
=_______
;
(2)设四边形
的面积为
,求
的最大值;
(3)是否存在
的值,使得以
,
,
为顶点的三角形与
相似?如果存在,求
的值;如果不存在,说明理由.
![]()
【答案】(1)6,12;(2)
时,
有最大值16.(3)
或![]()
【解析】
(1)当t=4时,点E与C重合,此时AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
由图分析当t=0时,S
=2.设M到AC的距离为h,所以
DE
h=2,所以h=2.易求得tan∠A=2,再在Rt
中,解直角三角形可以求出AC的长.
(2) 四边形
的面积等于三角形MDE和三角形MNE的和,用含有t的式子表示出四边形MDEN的面积,再求最值;
(3)两个三角形中已有
,如若再找到一对角相等,两三角形相似,故需分情况进行讨论:当
或
时,两三角形相似.
解:(1)由图可知:当t=4时,点E与C重合,此时AD=4,AC=AD+DE=4+2=6,故可求得AC=6;
当t=0时,S
=2.设M到AC的距离为h,所以
DE
h=2,所以h=2.
∴tan∠A=
=2.
在Rt
中,tan∠A=
=2.
∴BC=2AC=12.
(2)作
于点
,
∵
,
,∴
,∴
,
∵
,
∴
,
∵
,
,∴
,
又∴
,
∴
,
∴四边形
是矩形,
∴
,
∴![]()
,
根据题意,
,
∴
时,
有最大值16.
(3)假设存在
的值,使得以
,
,
为顶点的三角形与
相似.
∵
,∴
.
①当
时,
,∴
,∴
,
,
.
②当
时,
,此时
,
∵
,∴
,∴
,
∴
,
(舍去)
∴
或
时,以
,
,
为顶点的三角形与
相似.
![]()
【题目】在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中
、
两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:
![]()
(信息一)
小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);
(信息二)图中,
小区从左往右第四组的成绩如下
75 | 75 | 79 | 79 | 79 | 79 | 80 | 80 |
81 | 82 | 82 | 83 | 83 | 84 | 84 | 84 |
(信息三)
、
两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):
小区 | 平均数 | 中位数 | 众数 | 优秀率 | 方差 |
| 75.1 | 79 |
| 277 | |
| 75.1 | 77 | 76 |
| 211 |
根据以上信息,回答下列问题:
(1)求
小区50名居民成绩的中位数;
(2)请估计
小区500名居民中能超过平均数的有多少人?
(3)请尽量从多个角度比较、分析
,
两小区居民掌握新冠防控知识的情况.
【题目】阅读对学生的成长有着深远的影响.某中学为了解学生每周课余阅读的时间,在本校随机抽取若干名学生进行调查,并依据调查结果经制了以下不完整的统计图表.
组别 | 时间(小时) | 频数(人数) | 频率 |
A |
| 6 |
|
B |
|
|
|
C |
| 10 |
|
D |
| 8 |
|
E |
| 4 |
|
合计 | 1 |
![]()
请根据图表中的信息,解答下列问题:
(1)表中的
,
,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足1小时的学生大约有多少名?
(3)
组的4人中,有1名男生和3名女生,该校计划在
组学生中随机选出两人向全校同学作读书心得报告,求抽取的两名学生刚好是1名男生和1名女生的概率.