题目内容

如图:已知,BE、CE分别平分∠ABC和∠ACD且∠BEC=30度,则∠EAC=
 
考点:三角形内角和定理,三角形的外角性质
专题:
分析:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC,∠ECD=∠BEC+∠EBC,根据角平分线的定义可得∠EBC=
1
2
∠ABC,∠ECD=
1
2
∠ACD,然后整理得到∠BEC=
1
2
∠BAC,过点E作EF⊥BD于F,作EG⊥AC于G,作EH⊥BA交BA的延长线于H,根据角平分线上的点到角的两边距离相等可得EF=EG=EH,再根据到角的两边距离相等的点在角的平分线上判断出AE平分∠CAH,然后列式计算即可得解.
解答:解:由三角形的外角性质得,∠ACD=∠BAC+∠ABC,∠ECD=∠BEC+∠EBC,
∵BE、CE分别平分∠ABC和∠ACD,
∴∠EBC=
1
2
∠ABC,∠ECD=
1
2
∠ACD,
∴∠BEC+∠EBC=
1
2
(∠BAC+∠ABC),
∴∠BEC=
1
2
∠BAC,
∵∠BEC=30°,
∴∠BAC=60°,
过点E作EF⊥BD于F,作EG⊥AC于G,作EH⊥BA交BA的延长线于H,
∵BE、CE分别平分∠ABC和∠ACD,
∴EF=EH,EF=EG,
∴EF=EG=EH,
∴AE平分∠CAH,
∴∠EAC=
1
2
(180°-∠BAC)=
1
2
(180°-60°)=60°.
故答案为:60°.
点评:本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线上的点到角的两边距离相等的性质,到角的两边距离相等的点在角的平分线上的性质,熟记各性质并作辅助线是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网